Seismic Signal Classification Using Perceptron With Different Learning Rules
نویسندگان
چکیده
منابع مشابه
Learning Classification Rules Using Lattices
This paper presents a novel induction algorithm, Rulearner, which induces classification rules using a Galois lattice as an explicit map through the search space of rules. The construction of lattices from data is initially discussed and the use of these structures in inducing classification rules is examined. The Rulearner system is shown to compare favorably with commonly used symbolic learni...
متن کاملEEG Signal Classification with Different Signal Representations
If several mental states can be reliably distinguished by recognizing patterns in EEG, then a paralyzed person could communicate to a device like a wheelchair by composing sequencesof these mental states. In this article, we report on a study comparing four representations of EEG signals and their classification by a two-layer neural network with sigmoid activation functions. The neuralnetwork ...
متن کاملLearning Concept Classification Rules Using Genetic Algorithms
In this paper we explore the use of an adaptive search technique (genetic algorithms) to construct a system GABEL which continually learns and refines concept classification rules from its interaction with the environment. The performance of the system is measured on a set of concept learning problems and compared with the performance of two existing systems: ID5R and C4.5. Preliminary results ...
متن کاملLearning Classification Rules Using Lattices ( Extended
This paper presents a novel induction algorithm, Rulearner, which induces classification rules using a Galois lattice as an explicit map through the search space of rules. The Rulearner system is shown to compare favorably with commonly used symbolic learning methods which use heuristics rather than an explicit map to guide their search through the rule space. Furthermore, our learning system i...
متن کاملSeismic Signal Compression Using Nonparametric Bayesian Dictionary Learning via Clustering
We introduce a seismic signal compression method based on nonparametric Bayesian dictionary learning method via clustering. The seismic data is compressed patch by patch, and the dictionary is learned online. Clustering is introduced for dictionary learning. A set of dictionaries could be generated, and each dictionary is used for one cluster’s sparse coding. In this way, the signals in one clu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
سال: 2020
ISSN: 1939-1404,2151-1535
DOI: 10.1109/jstars.2020.3026011